Luminescence characteristics of yellow emitting Ba_3SiO_5 :Eu²⁺ phosphor

JOUNG KYU PARK*, MI AE LIM, KYOUNG JAE CHOI, CHANG HAE KIM Advanced Materials Division, Korea Research Institute of Chemical Technology, Daejon 305-600, Korea

The luminescence process of Eu²⁺-activated Ba₂SiO₄ phosphor is characterized by the 4f⁶5d \rightarrow 4f⁷ transition of Eu²⁺ acting as an activator center. And the studies on Eu²⁺-activated Ba₂SiO₄ phosphors have been performed by many researchers. Barry and Blasse *et al.* [1, 2], investigated the luminescence characteristics of Eu²⁺ ion in barium and strontium orthosilicates. Poort *et al.* [3] reported different emission of Eu²⁺ ion on two sites (nine and ten coordination) of Ba₂SiO₄ with orthorhombic structure by comparing with the results of the Eu²⁺-doped orthophosphates. However, the optical and luminescent properties of Eu²⁺-doped Ba₃SiO₅ are not known yet.

It has been found that when Eu^{2+} is incorporated into a host, different kinds of emission centers can be formed. This occurs if there are several kinds of cations replaceable by Eu^{2+} in the host matrix or if there exists several different sites for a specific cation [4, 5]. Moreover, the absorption and emission due to the transition between $4f^7$ and $4f^65d$ states of Eu^{2+} strongly depend on the crystal field acting on Eu^{2+} . Consequently, the choice of host materials is a critical parameter for determining the optical properties of the Eu^{2+} ions. In the present work, we have synthesized the previously unknown $Ba_3SiO_5:Eu^{2+}$ phosphors among barium silicate phosphors and investigated their luminescent properties of these using an ultraviolet (UV) source.

The Ba₃SiO₅:Eu²⁺ phosphor powders were prepared using a solid-state reaction method. The staring materials used in the preparation of Ba₃SiO₅:Eu²⁺ phosphor were pure powders of BaCO₃, SiO₂ (quartz), and Eu₂O₃. The stoichiometric amount of starting materials was thoroughly mixed and ground under acetone in an agate mortar. The mixed powders were then heattreated at various temperature and time periods under a reducing atmosphere. The resulting powders were identified by X-ray diffraction (XRD) using Cu K_α radiation (Ni filter). The emission and excitation spectra of the phosphor powders were measured using a Perkin-Elmer LS-50 luminescence spectrometer with a xenon flash lamp.

The emission spectra of $Ba_3SiO_5:Eu^{2+}$ phosphor heat-treated at different temperatures are shown in Fig. 1. As can be seen from this figure, two emission bands are observed at 504 and 566 nm. Since the two emission spectra of $Ba_3SiO_5:Eu^{2+}$ phosphor are quite

Figure 1 The emission spectra of $Ba_3SiO_5:Eu^{2+}$ phosphor heat-treated at different temperatures.

different, it can be presumed that Eu^{2+} ions occupy two sites in the Ba₃SiO₅ lattice and give rise to two emission centers. The main peak of this phosphor is transferred from a wavelength of 566 nm to a wavelength of 504 nm as heat-treated temperature increases. The Ba₃SiO₅:Eu²⁺ phosphor heat-treated at 1050 °C exhibits yellow emission maximum peaked near 566 nm. As increased heat-treated temperature, the green emission at about 504 nm prevails rather than the yellow emission band.

To investigate the crystallinity of Ba₃SiO₅:Eu²⁺ phosphors heat-treated at different temperatures, XRD measurements were performed. In case of the sample heat-treated at 1050 °C, most of peaks correspond to the Ba₃SiO₅ phase that has tetragonal structure. As the heat-treated temperature is increased, the structure of the phosphor was composed of a mixture of tetragonal Ba₃SiO₅ and orthorhombic Ba₂SiO₄. Fig. 2 shows the intensity ratio of Ba₃SiO₅ phase to Ba₂SiO₄ phase as a function of the heat-treatment temperature. $I_{\text{Ba}_3\text{SiO}_5}$ is the XRD intensity of (2 0 2) plane for Ba₃SiO₅ and $I_{Ba_2SiO_4}$ is the XRD intensity of (0 3 1) plane for Ba₂SiO₄. As the heat-treatment temperature is increased from 1050 to 1550 °C, the intensity ratio of Ba₃SiO₅ phase to Ba₂SiO₄ phase decreases. This indicates that the crystalline structure of this phosphor is transformed from the tetragonal Ba_3SiO_5 phase to the orthorhombic Ba_2SiO_4 phase as the heat-treatment temperature increases. It can

^{*}Author to whom all correspondence should be addressed.

Figure 2 The intensity ratio of Ba₃SiO₅ phase to Ba₂SiO₄ phase in terms of various heat-treatment temperatures. ($I_{Ba_3SiO_5}$ is the XRD intensity of (2 0 2) plane for Ba₃SiO₅, $I_{Ba_2SiO_4}$ is the XRD intensity of (0 3 1) plane for Ba₂SiO₄.) The inset shows the XRD patterns of Ba₃SiO₅:Eu²⁺ phosphor heat-treated at (a) 1050 °C and (b) 1550 °C.

be confirmed from the XRD patterns of the samples heat-treated at 1050 and 1550 °C as shown in the inset of Fig. 2.

Because the Eu²⁺-doped compounds strongly depend on the neighboring Eu²⁺ ions, it can be presumed that Eu²⁺-doped barium silicate phosphors have a different emission band which changes with the crystalline environment. Tetragonal Ba₃SiO₅ has the same structure as Cs₃CoCl₅ in which there are two barium sites that appear in equal numbers in the lattice. Consequently, Ba₃SiO₅:Eu²⁺ phosphor has two emission bands which occur at the wavelength of 504 and 566 nm as shown in Fig. 1. The excitation spectra of Ba₃SiO₅ phosphor with 0.1 mol Eu²⁺ are investigated as shown in Fig. 3. The excitation spectra were obtained by monitoring two emission bands of 504 and 566 nm, respectively. The excitation spectra of Ba₃SiO₅:Eu²⁺ correspond to the $4f^7 \rightarrow 4f^65d$ transition of Eu^{2+} and depend on the emission wavelength. The excitation spectrum for 504 nm emission center has one excitation band at 350 nm, whereas the excitation spectrum for 566 nm emission center has two excitation bands at 335 and 398 nm.

The effect of Eu^{2+} concentration on the emission of $Ba_3SiO_5:Eu^{2+}$ phosphors was also investigated. In general, the $Ba_2SiO_4:Eu^{2+}$ phosphor having the orthorhombic structure showed a typical concentration quenching and shift to longer wavelength as the concentration of Eu^{2+} increases due to some changes of the crystal field around Eu^{2+} . However, the $Ba_3SiO_5:Eu^{2+}$ phosphor showed some different luminescence features. The emission spectra of $Ba_3SiO_5:Eu^{2+}$ phosphors prepared at various concentrations of Eu^{2+} are shown in Fig. 4. In the emission spectrum of

Figure 3 The excitation spectrum of $Ba_3SiO_5:Eu^{2+}$ (0.1 mol) phosphor heat-treated at 1050 °C (solid line: excitation spectrum by monitoring at 566 nm emission center, dotted line: excitation spectrum by monitoring at 504 nm emission center).

Figure 4 The emission spectra of $Ba_3SiO_5:Eu^{2+}$ phosphor with various amounts of Eu^{2+} concentration.

Ba₃SiO₅:Eu²⁺ the phosphor having a 0.01 mol Eu²⁺ concentration showed one broad emission band at 568 nm. As the concentration of Eu²⁺ increases, however, the emission band of Ba₃SiO₅:Eu²⁺ phosphor is split into two emission bands with a main peak at 504 nm and a less intense band at 568 nm. At higher concentration of Eu^{2+} (0.15 mol), the intensity of 568 nm emission band is drastically reduced and Ba₃SiO₅:Eu²⁺ phosphor has maximum intensity at 504 nm. This may be attributed to energy transfer between two Eu^{2+} sites [4, 6]. As the Eu²⁺ concentration increases, the distance between Eu²⁺ ions becomes less, and the probability of energy transfer among Eu^{2+} ions increases [7]. In other words, the probability of Eu²⁺ ions at higher levels of 5d, which make an energy transfer to the lowed 5d levels of Eu²⁺ ions, increases with an increase of Eu²⁺ concentration. Blasse et al. [6], explained the energy transfer from the Eu₁-site to Eu₂-site in strontium silicate phosphate with apatite structure through energy overlap of the emission band and excitation band of the Eu₁-site and the Eu₂-site. It makes it possible to explain the energy transfer from Eu₁-site and Eu₂-site in present case. However, further investigation seems necessary to prove the energy transfer between Eu²⁺ ions in Ba₃SiO₅ phosphor.

In summary, the $Ba_3SiO_5:Eu^{2+}$ phosphor has been synthesized and the luminescence properties have been investigated. The emission spectrum and the crystalline structure of $Ba_3SiO_5:Eu^{2+}$ phosphor strongly depends on the heat-treatment temperature. The crystalline structure of $Ba_3SiO_5:Eu^{2+}$ is transformed from tetragonal-type Ba_3SiO_5 to orthorhombictype Ba_2SiO_4 , as heat-treatment temperature increases. According to the transformed structure, the Eu^{2+} -doped barium silicate phosphors display different emission bands because the Eu^{2+} -doped compounds are strongly affected by the surrounding Eu^{2+} ions. The energy transfer from the Eu_1 -site to the Eu_2 -site is confirmed through the emission band of Ba_3SiO_5 as the Eu^{2+} concentration increases.

References

- 1. T. L. BARRY, J. Electrochem. Soc. 115 (1968) 1181.
- G. BLASSE, W. L. WANMAKER, J. W. TER VRUGT and A. BRIL, *Philips Res. Repts.* 23 (1968) 189.
- S. H. M. POORT, W. JANSSEN and G. BLASSE, J. Alloys Comp. 260 (1997) 93.
- M. LESKELÄ, T. KOSKENTALO and G. BLASSE, J. Solid State Chem. 59 (1985) 272.
- 5. G. BLASSE, J. Sold State Chem. 62 (1986) 207.
- 6. G. BLASSE and A. BRIL, *Phys. Lett.* A **28** (1969) 572.
- J. QIU, K. MIURA, N. SUGIMOTO and K. HIRAO, J. Non-Cryst. Solids 266 (1997) 213.

Received 20 August and accepted 26 August 2004